
 Page 1 of 2

Position Statement

“Is Software Reliability an Oxymoron?"

Panel Session at the Technology Business Council Software Roundtable,
Richardson Chamber of Commerce,
October 26, 2000

Danny Faught, Cigital, Inc.
faught@cigital.com
http://www.cigital.com/~faught

Software reliability is both difficult to define, and difficult to achieve. But a couple of
different angles on the subject give us hope.

What is reliability?

According to the IEEE, “reliability” is “The ability of a system or component to perform
its required functions under stated conditions for a specified period of time.” This
implies that failures tend to be catastrophic, such that it’s easy to tell whether
something is working or not. With software, catastrophic failures are certainly
common. But just as common are failures that fall into a gray area, where the
application is still mostly working, but some small feature is malfunctioning, or
perhaps a user interface flaw prevents the user from utilizing the application properly.
Also, catastrophic failures often start with small localized failures that compound
eventually into a big train wreck of problems. It’s hard to define when the application
actually stopped working.

Factors

Two important factors come into play in a software user’s perception of reliability. First
is the concept of “Good Enough” quality. The focus is not to create defect-free
software, but to create something that the customer will perceive as a good value. A
software development organization will balance the reliability that is expected for their
product with the cost that the market will bear, and the time frame in which it is
needed. In a few cases, ultra-high reliability is necessary, and this leads to ultra-high
prices. Usually lower prices are required in order get market penetration, and the
customer can tolerate lower reliability. So you may hear software users complain
about less-than-stellar reliability, but they may not be willing to pay for anything
better, or they may not be willing to wait for it any longer.

 Page 2 of 2

The second factor is the prevalence of risk. “Risk is everywhere,” says Cigital CEO Jeff
Payne. Software projects frequently get surprised by problems. Often the problems are
big hairy problems that drive right into the company’s bottom line. Risk isn’t
necessarily bad; it’s a natural occurrence. Companies take big risks with the hope of
reaping big rewards. But risk should be managed. We need to understand what all our
risks are, how likely it is that they will become problems, and how much damage they
will cause to the business if they do.

We can reduce the likelihood of getting bitten by a risk, and we can reduce the
potential damage. We can also put contingency plans in place, so that if a problem
does bite, we’re ready to start the damage control immediately. Too many companies
don’t make the effort to identify and mitigate their risks. They end up using their
resources to fight fires, and overall reliability suffers. The development organization is
surprised by the problems, which leads to the customer being surprised by poor
software reliability, if the software ever even sees the light of day.

Where do we go now?

The industry is putting tremendous amounts of energy into improving the software
development process, so that instead of creating software that is just barely Good
Enough, we can get to a point where it’s cheaper not to put the bugs in in the first
place. I believe that the craft of software development is still in its infancy as an
engineering profession, and we have many decades of growing up ahead of us.

Risk management gives us the tools to deal with the realities of the software
development process, wherever it is in its evolution. You’ll find many resources
describing risk management at the project level. We need to incorporate the process at
all levels of the company, from the corporate risk manager and other executives down
to the project manager and engineers. This will reduce the surprises that so often
cause a compromise in the level of software reliability.

Is “software reliability” an oxymoron? Not really, when we understand the market
realities, and if companies learn how to deliver on their promises with no surprises.

