This article is provided courtesy of STUE, the software testing and quality engineering magazine.

Tools & Automation

How to IMPIOVE your

testing process by
using Programming
skills

BY DANNY R. FAUGHT

Scrip

Are you a programmer?

The testing profession attracts people
from a wide variety of backgrounds, and
many testers are not familiar with pro-
gramming. | want to motivate you to
learn a programming language, specifi-
cally, a scripting language. I’'m going to
throw some code at you, and while

I don’t expect you to understand
everything about it, you may be able to
start seeing how problems can be solved
with a script.

Should you be a programmer?

Sometimes testers have a desire to learn
the language that their project developers
are using, so they can understand how the
product is implemented. But I also think
testers should learn programming skills in
order to make the testing process more ef-
fective. It’s hard to get a firm understand-
ing of a programming language unless
you have a need to do something useful
with it. Writing programs to help with

QUICK LOOK

= Examples of simple scripts
= Choosing a language

18 STQE

your daily testing tasks can provide this
motivation, while learning a language just
to read code that someone else wrote isn’t
nearly as motivating.

For example, on one project 'm work-
ing on right now, I knew I needed to learn
how to program on the system under test,
but just didn’t get around to it. Once I de-
cided to start automating some tests,
though, I finally had my motivation. I was
able to pick up enough of a new language
to complete the first test (and find the first
bug!) within an afternoon.

More to it than test execution
When people talk about test automation,
they’re usually talking about automating
test execution. But I want you to think
more broadly when you’re considering
how you can automate the many different
things you do as a tester. Sometimes it isn’t
appropriate to automate your test execu-
tion. When this happens, you shouldn’t
think that nothing can be automated.
There are still plenty of opportunities to
automate. You can automate the setup of
your test machines, including installing
the product and configuring it, and you
can also automate your test design.

One of my favorite automation exam-
ples required only a single line of code.
While I was doing exploratory testing on

MARCH/APRIL 2002 www.stgemagazine.com

ting

a Web application, I came to a file attach-
ment dialog, where the browser would
send a file from the local disk over to the
Web server. After trying some simple test
cases, I threw some extremes at the appli-
cation.

I always like to start by sending a mil-
lion zeros. This combines a data value that
the application may not be expecting—a
very long line (there are no line feeds in
the data) and a large volume of data. But
where do you get a file like that? You cre-
ate it on the spot.

If you know several different program-
ming languages, you know that most or
all of them are up to this task. For simple
types of test data, you can even use a text
editor—type out a few lines, copy and
paste, then copy the whole thing and paste
again. By repeating this process, you can
grow the file exponentially and get as
many megabytes of data as you need.
(You’ll also find out how robust your text
editor is.) But ’'m lazy, so I prefer an easier
approach.

For this particular task, I used a script-
ing language. Why? Because I can do it as
a one-liner. My favorite scripting language
happens to be Perl, so here’s the Perl code
for my one-liner:

print "\0" x 1000000

http://www.stqemagazine.com/

This article is provided courtesy of STUE, the software testing and quality engineering magazine.

Here I used Perl’s Print command to print
out the data. The “x 1000000” tells Perl
to make a million duplicates. The data
that we’re duplicating is “\0.” The back-
slash ensures that we get a byte value of
zero. (Note that this does not print out as
the text character “0,” which is actually
encoded with a byte value of 48.) Why do
1 take such pains to get real zeros? Because
programs don’t expect to get that type of
data!

But where does the data go? I'm going
to enlist the help of a command-line shell.
(What’s a command line? See the sidebar
on page 20.) Now that we have some idea
of how the Perl code works, I'll show you
the full command line that I use to execute
the code:

perl —e 'print "\0" x 1000000' > datafile

If I type this code into a shell and press En-
ter, a file named “datafile” will appear on
my disk, containing exactly one million
zero bytes. Because it’s a one-liner, I can
just type it in wherever I need it. I don’t
need to save the code in a file, set up the
network to access a code repository, or dig
up some sort of removable media to copy
the code over.

One thing I need to do before I can use
my one-liner is to make sure that the Perl
interpreter is installed. On a few systems,
you have a good chance of finding Perl al-
ready installed. For example, a Linux sys-
tem is very likely to have Perl installed, but
Microsoft Windows systems usually don’t
have it by default. (You’ll find a link to
Perl’s Web site in the StickyNotes for this
article.)

A little help from the shell
The work in the one-liner is split between
Perl and the command line interface
(CLI). The shell first interprets the com-
mand line as a whole, before the Perl in-
terpreter gets to see it. In this case, [used a
Unix-style shell. Starting the command
line with “perl” tells the shell to look for a
program named “perl” in all the places it
knows to look for programs and run the
program (youw’ll need to set your PATH
environment variable to include the direc-
tory where the Perl interpreter is installed).
The first command line argument sent
to Perl is “~e”, and the code in single
quotes is the second and last argument.
The —e option tells Perl to execute the
code following the —e rather than looking
for the code in a file. Finally, “> datafile”
is interpreted by the shell. This tells the
shell to open a file named “datafile” and

direct the output from Perl to the file. We
could have done the file handling within
the Perl code, but it’s easier using the
shell’s syntax. When we’re typing in one-
liners, saving keystrokes is an important
feature.

If you’re running Perl from an MS-
DOS shell on Windows, all of the same
mechanisms apply for starting Perl and
creating the data file. One difference you
need to be aware of is something that will
cause you fits any time your code passes
through more than one interpreter on any
system. In the earlier example, the single
quotes are interpreted by the shell, and the
inner quotes are passed through to Perl.
This works because I used two different
types of quotes. MS-DOS doesn’t like sin-
gle quotes, so we need to use a somewhat
more awkward method:

perl —e "print \"\0\" x 1000000" > datafile

We can’t change to single quotes inside the
Perl code, because the magic \O incanta-
tion only works within double quotes. So
we embed double quotes within double
quotes by escaping the inner quotes with
backslashes. It’s ugly, but it works.

Now, let’s suppose that we try our data
file in a test, and much to our disappoint-
ment, it doesn’t flush out a bug. No prob-
lem, we’ll try ten million bytes! Just run
the one-liner again with one more zero.
Maybe we did find a bug, and we want to
reproduce it with a smaller data file.
Again, a simple change to the Perl code
can yield any size file we want, and also
with any contents we specify. We should
also try a more normal character like “a”
since the program we’re testing may reject
zeros as invalid data.

Shell scripts
We’ve been using the shell to help our
code, so why not do some programming
using only the shell? Indeed, you can put
shell commands in a file and execute them
as a script. Even MS-DOS has a simple
batch file mechanism (ever see a file end-
ing in “.bat”?). Unix-style shells include
features to facilitate scripting, including
looping mechanisms, Boolean and math
logic, and even user-defined functions.
Unix shells aren’t just for Unix users, ei-
ther—they are available for a wide range
of operating systems (usually for free).
Here’s a simple script that I recently
used to monitor a system while I ran a
stress test. You could consider it a heart
monitor—giving you a heartbeat so you
can watch the basic health of the system.

while true
do
date
sleep 30
done

To run this script on a system that has the
bash shell installed, save it in a file named
“monitor.” Then at a shell prompt, type
“bash monitor.” You’ll see an endless
stream of output like this:

2001
2001
2001
2001

Sun Sep 30 15:45:47
Sun Sep 30 15:46:17
Sun Sep 30 15:46:48
Sun Sep 30 15:47:19

Note that the times are sometimes more
than thirty seconds apart. This is because
of the time it takes to execute the com-
mands in the loop between the calls to the
sleep command. Hold down the Control
key and press “c” to stop the script. Un-
less you do some tricks to run this script in
the background, youw’ll want to run the
monitor in one window and the test in an-
other.

Why in the world would you want to
check the time every thirty seconds? I
don’t have an elaborate test harness on the
embedded system I’m testing on. In fact,
no commercial test tools are available for
it. I am running a simple stress test that
spawns many simultaneous tasks. I may
leave the test running over a weekend. If
the system crashes while 'm gone, I want
to know when it crashed, and maybe learn
some additional details about the health
of the system right before the crash. My
simple script will give me that.

If the system crashed, I’ll know when it
happened because the stream of time
stamps will have come to an abrupt halt.
Sometimes, a crash is preceded by a pro-
gressive degradation in performance. I can
tell if that happened by looking at the gap
between each time stamp. I have seen
some pathological cases where most of a
system had crashed, and the only thing
still running was the monitor script.
Therefore, it’s good to have at least two
different types of monitors running so you
can validate the data.

You will probably want to log the out-
put of your monitor to a file. If you cause a
system crash, your shell window may go
down with the system. Or you may find
nothing but a stream of “out of memory”
errors filling your screen, and have no idea
when they started. So try “bash monitor |
tee monitor.out” to run the script. This
sends the output from the monitor to the

www.stgemagazine.com MARCH/APRIL 2002 STQE 19

http://www.stqemagazine.com/

This article is provided courtesy of STUE, the software testing and quality engineering magazine.

What { line?

| was trying to show a tester how to use Perl once, and | asked her to type something on the
command line. Her response really surprised me —“What's a command line?" It hadn't oc-
curred to me that a tester could have made it through several projects without ever escaping
the confines of a graphical user interface (GUI). In fact, it's possible to work with a scripting lan-
guage entirely within the GUI, but I've never bothered to work out how to set it up.

For those who are stranded in the land of the GUI, ask an old-timer what computers were
like before the graphical interface came along. The user used a terminal with a text-only display
or teletype and a keyboard, and initiated all actions by typing the name of a command along
with options to specify what the command should do. This is a command line interface (CLI).

Personally, | prefer to use a hybrid approach. | use a GUI for tasks that it's well suited for,
and use one or mare CLIs running within the GUI where appropriate. My Perl one-liners are a
good example of this. Using the command line instead of the GUI saves me from having to save
the code to a file before | run it.

The method of getting to a CLI differs from one system to anather. Unix-like operating sys-
tems generally offer a wide variety of “shells,” many of which have some very useful features
such as command line recall and editing, and job control for managing multiple concurrent
tasks. A shell window is only a click or two away on most Unix graphical desktops.

For Windows, the simplest CLI is the “Run” dialog on the Start menu, which lets you run
one command at a time. This doesn't always work well with non-GUI programs, though. There's
the good old MS-DOS command prompt that will even recall and edit previous command lines
in some versions. In addition, there are a number of alternative CLIs available on Windows, in-
cluding ports of several Unix shells. Installing the free Cygwin environment is a good way to get
access to several full-featured shells on Windows.

“tee” program, and tee sends it to both the
terminal and the file. You get the benefit of
being able to check the system’s heartbeat
at a glance, and you’ll also be keeping a
record of that heartbeat in a safe place.

I have it easy, stress testing an operating
system. If you’re testing an application
running on top of the operating system,
you’ll want to monitor the status of the ap-
plication by performing some simple oper-
ation on a regular basis. If you don’t have
an easy way to do this via a programmable
interface such as a command line, pro-
gramming library (API), etc., then you
would be justified in asking the developers
to provide such an interface in order to im-
prove the testability of the application.

Drop me a line

Here’s another shell script example writ-
ten for the bash shell. Let’s say we already
have a script that generates a report from
your bug tracking system, or we’re gener-
ating reports from a test execution tool.
We want to email the report to someone
automatically. And let’s add one addition-
al twist—we need to accomplish this task
on several different operating systems, in-
cluding several versions of Windows run-
ning a shell under the Cygwin environ-
ment (see www.cygwin.com) and also
several different Unix variants. So we’ll
use a portable mail utility that we can call
from another script.

20 STQE

If we name the script “shmail,” we can
call it like this, specifying the subject of the
mail message, whom to send it to, and a
plain text file to send: “bash shmail "bug
trend report" manager@foo.com report-
file”. The script “shmail” looks like this:

os=$(uname —s)
subject=$1
to=$2
file=$3
if [${0s:0:6} = CYGWIN]
then
blat $file —s "$subject" -t "$to"
else
mailx —s "$subject" "$to" < $file
fi

The key to the script’s portability is the
call to the external “uname” utility to de-
termine what operating system we’re run-
ning on. The next three lines assign mean-
ingful names to the three parameters that
we pass in. In the “if” statement, we com-
pare the first six characters of the operat-
ing system name to the string “CYG-
WIN.” This string varies depending on
which version of Windows we’re running
the Cygwin environment on, but we’ll
catch all of them by just looking at the
first six characters. If we are running on
Windows, we use the open source “blat”
program to send the mail. Otherwise, we
assume we’re on a Unix variant that has

MARCH/APRIL 2002 www.stgemagazine.com

“mailx” installed. Of course, additional
variations can be added. For both mail
programs, we expect that the system
knows how to locate them on the hard
drive, since we didn’t specify the full file-
name path for the programs.

I think it’s very powerful to automate a
process and have the results magically
show up in my email box. But now that
Pve introduced this tool, I want to point
out that it’s very easy to abuse it. I've seen
people’s mailboxes fill up with automated
email that they never look at, because they
get so much of it. So please put some care-
ful thought into how much email your
scripts are sending, and consider that the
needs for automated reporting may
change over time—don’t just leave your
scripts on autopilot without periodically
reevaluating the process.

What else can you do with

a script?

There are many tasks that scripts can help
with. I’'ve used scripts to summarize test
results and produce a report. I've used
scripts to automate nightly builds. I’'ve
used a complex parallelizing test harness
that was implemented with scripts. And
Pve written a reusable stress test driver.
Oh, and one other thing—TI’ve implement-
ed many automated test cases, using a
wide variety of scripting languages.

For instance, Expect is a special-pur-
pose, public-domain scripting language
that is very useful if you’re testing a com-
mand line interface. I have implemented a
reliability test based on user scenarios that
I automated using Expect. The computer
never knew that there weren’t actually
hundreds of users all interacting with the
system—I even had the script insert ran-
dom typing delays.

Most commercial test execution tools
have a proprietary built-in language, or
“vendorscript,” to use a word coined by
Bret Pettichord. These languages are usu-
ally vaguely similar to a popular language
like C or Visual Basic, though they gener-
ally only include a subset of the features
that the real languages support. Depend-
ing on how the tool works and how
you’re using it, you may need to stick with
this specialized language for your script-
ing. Although you will need to learn the
nuances of the language, that knowledge
won’t be applicable to any task other than
working with that one tool.

A few tools use a popular language as
their native tongue, so while you can’t
choose the language, at least your knowl-
edge about the language (and perhaps even

http://www.stqemagazine.com/

This article is provided courtesy of STUE, the software testing and quality engineering magazine.

some of your code) will be transferable.
Some test tools allow you to call an exter-
nal program. This allows you to use any
language that you choose, to the extent
that you can do what you need to do out-
side the direct environment of the test tool.

To compile or not?

Why am I discussing scripting languages
and not compiled languages like C++,
Ada, or Java? I think scripting languages
are generally a better tool for a tester.
First, a bit of definition. Code written in a
compiled language must be processed by a
compiler before you can run a program
written in that language. A scripting lan-
guage is generally interpreted, which
means that you can execute the code di-
rectly. There are many situations where
these definitions get blurred, but let’s try
to keep it simple.

The most obvious benefit of using a
scripting language is that you don’t have to
bother with compiling your code before
you run it. This makes it easy to experi-
ment, since you have an “edit-run” cycle
rather than an “edit-compile-run” cycle
every time you modify the code. Testing of-
ten involves experimentation. Think of the
Perl one-liner example— with a single com-
mand line, we can write the code and run
it. If you have a decent shell, you can run
the code, recall the previous command line,
edit the code to change your test data, and
then press Enter to execute the new code.

When learning a scripting language,
you can do useful things with the lan-
guage more easily than with a compiled
language. Compiled languages generally
require some setup code even for simple
programs such as loading header files,
building data structures, declaring vari-
ables, etc. Simple programs written in a
scripting language almost always require
less code and less knowledge about the
programming environment than pro-
grams for a compiled language. So you’ll
be running programs saying “Hello,
world” with less frustration in Perl, for ex-
ample, than in C or Java.

I also like Perl better than C because
Perl code tends to be very compact. I can
do a tremendous amount of work in only a
few lines of Perl code. If T translate that
code to C, I could easily end up with three
times as much code or more. So I can write
programs more quickly since I don’t have
to write as much code. This effect may not
be quite as pronounced if we compare it to
a more modern compiled language, but I

doubt that I'll find a compiled language
that rivals Perl in compactness.

Fans of compiled languages point out
that the loose rules of a scripting language
will make scripts prone to errors. The ex-
tra code that you write in a compiled lan-
guage to declare your variables and load
function prototypes helps the compiler
point out errors that you might otherwise
have missed. You should be aware that
bugs are more likely to lurk in your scripts
if you take advantage of all of the pro-
gramming shortcuts that are available.
You should use some prudence when de-
ciding to use these shortcuts. Because larg-
er and more complex programs are harder
to create and thus more buggy than small
programs, you should use fewer program-
ming shortcuts on larger programs. For
Perl scripts longer than a few lines, I al-
ways turn on Perl’s options to be pickier
when parsing the code, and I take more
care to write bulletproof code.

The size of the code is another relevant
factor here. Testers generally write small
test cases, well under 1,000 lines of code
each. Test drivers and other support code
are likely to be less than 10,000 lines of
code. Scripting languages are well suited
for small programs, and for an experi-
enced programmer, they can also be a
good choice for medium-sized programs.
For large programs, you’re better off with
a compiled language.

Choosing a language

So which scripting language should you
use? There are dozens of options, with
more appearing every year. Many of them
are distributed with an open source li-
cense, so they won’t cost you anything. To
make an informed choice, you have to do
some research.

First, find out what operating systems
your scripts will need to run on. Will your
scripts need to be portable to more than
one operating system? Narrow your list of
options by eliminating any languages that
aren’t supported on all the operating sys-
tems you’re using.

Also find out what languages the peo-
ple in your organization already know.
They should be involved in the choice of
language, because they may someday need
to read or modify your code. Also it can
be a huge advantage if you have a local
guru who can help you learn the language.

Some of the more common scripting
languages that I run across lately are: the
various shells, Perl, Tcl, Python, and re-

cently, Ruby. Your search shouldn’t neces-
sarily be limited to these choices, but you
can take this list as a suggestion for where
to start.

A beginning programmer may have
trouble writing a moderately complex
shell script because of the typically lean
documentation, and the fact that the pro-
grammer would need to learn how to use
several external and sometimes esoteric
utility programs. Shell scripts are best for
very simple kinds of processing. Though
our Perl example was only a one-liner, lan-
guages like Perl that were designed specifi-
cally to be scripting languages are better
than the shell for complex programs.

When choosing among scripting lan-
guages, you’ll notice that older languages
such as Perl and Tcl are a bit clumsier
with respect to newer programming para-
digms such as object-oriented program-
ming. But the newer languages will have a
much smaller and less robust body of pre-
written code available to handle common
programming tasks, and they’ll have a
smaller user base that can help you with
any questions you have. The choice of a
programming language can reach a reli-
gious fervor in some groups. So in the end,
it’s up to you to decide which one you
have more faith in.

Currently, ’'m using an embedded op-
erating system that even Perl hasn’t been
ported to. 'm using a compiled language
for the stress tests that I’'m writing, and the
system’s limited shell language for the test
harness. But 'm also looking for opportu-
nities to use a more widely supported op-
erating system for some other types of test
automation, such as processing reports
from the bug tracking system.

To be most effective, you’ll eventually
end up learning more than one language.
But the most important thing is that you
take that first step of learning your first
scripting language. You’ll find more uses
for it than you can imagine. STQE

Danny R. Faught has been a script jock-
ey ever since he started doing software
testing. He is now an independent soft-
ware quality consultant and proprietor
of Tejas Software Consulting (www.
tejasconsulting.com). Contact him at
faught@tejasconsulting.com.

STOE magazine is produced by
STQE Publishing, a division of
Software Quality Engineering.

www.stgemagazine.com MARCH/APRIL 2002 STQE 21

http://www.stqemagazine.com/

